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Phases in the Total Testing Process

The pre-pre-analytical phase involves

activities before sample collection,

including ordering tests, ensuring

appropriate selection of tests on clinical
‘ }%\ ., heed at the right time.

The post-analytical phase

includes reporting results to
clinicians, interpretation, and
addressing any follow-up
r‘equir'emen‘rs. Postanalytical

phase

Pre-preanalytic

,L_ § .‘ I
\“% phase

Analytical

‘=» The pre-analytical phase covers
specimen collection, handling, and
Transportation.

tests, and generating results.

This figure is cited from Batt Lab. https://battlab.com/pre-analytical-errors-what-are-they-and-how-to-avoid-them/



The Emerging Importance of the Pre-pre-analytical
Phase in Reducing Testing Errors

@ Unlicensed Published by De Gruyter October 12, 2016
Towards a new paradigm in laboratory medicine: the five rights

Mario Plebani 2 4

From the journal Clinical Chemistry and Laboratory Medicine (CCLM)
https://doi.org/10.1515/cclm-2016-0848

The “Five Rights” in the pre-pre-analytical phase:

[ The right patient i.e. the use of the correct sample, the use of the
right test at the right time, and the right method of sample collection
and transportation.




What is Machine Learning?

ARTIFICIAL
INTELLIGENC
MACHINE
LEARNING

DEEP
LEARNING

1950’s 1960's 1970’s 1980’s 1990’s 2000’s 2010’s

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.

« Machine learning is a

subset of AI that enables
systems to learn from
data, identify pattern,
and make decision with
minimal human
Intervention.

It involves using
algorithms to analyze
large datasets, extract
insights from the data,
and improve performance
over time as more data
becomes available.



Supervised Machine Learning
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ML Empowers Laboratory Data Analysis

* Up to 70% of data in the EHR are derived from the clinical
laboratories.

* Most test results are reported as individual numerical or categorical
values in structured formats.

* High dimensional and longitudinal data.
* Manual analysis and interpretation is challenging!

« Computational data analytics provides valuable information.



Opportunities for Machine Learning in Laboratory
Medicine

( Identify pre-analytical errors, e.g. wrong blood in

. Improve laboratory workflow ) L tube, IV fluid contamination, hemolysis
4 N\
Predict accuracy of measured
laboratory results Improve test selection
\_ J
4 ) L > o 4 )
Interpret complex laboratory R Enhance quality control
X results ) e . e.g. early warning )
. . \
4 Clinical decision support ) Establish population-based
. reference range

Predict onset, progression,
subtypes, outcome of diseases
e.g. sepsis, AKIl, COVID-19,

cancer i i

\ J Microorganism detection and [ Analyze genetic and genomic ]
identification data

[ Facilitate early cancer detection] Disease classification




Parathyroid Hormone-Related Peptide (PTHrP)

(serum Ca = 10.3 mg/dL)

KIDNEY Indications for Testin
/NJMOR CELLS s

Stimulates £ )
resorption G 5

\

8 stimulates Order serum/plasma Ca
PTHIP

\ expression Or ionized Ca

2+Stimul.ates OSTEOBLASTS
Ca’* reabsorption
BoPE Elevated Ca®* Hypercalcemia confirmed
concentrations
QSTEQCLASTS
90% of total hypercalcemia cases are diagnosed as Order Intact PTH

primary hyperparathyroidism and malignancy-related

hypercalcemia.

PTHrP is the most common cause of humoral
malignancy-related hypercalcemia. Order PTHrP
Hypercalcemia mediated by PTHrP is most frequently
caused by malignant solid organ tumors, and it is
indicative of a poor prognosis. Order 1,25-OH-VitD
PTHrP testing can aid in diagnosing hypercalcemia of
malignancy when the source of elevated calcium is
not evident.

Low or Normal

Low or Normal

Lymphoma or
oranulomatous disease

Vit D excess cancer

High

Mundy GR and Edwards JR, J Am Soc Nephrol 2008; 19 (4): 672-5

A4

Algorithm adopted from ARUP Consult Primary hyperparathyroidism



Poor Utilization of the PTHrP testing

* PTHrP testing is often ordered for patients with a low likelihood of having
hypercalcemia of malignancy, indicating a low pre-test probability.

* PTHrP is typically a send-out test to reference laboratories with TAT ranging
from one to two weeks.

* For emergency department patients and inpatients, PTHrP testing may not be
reimbursed if the results come back too late.

* This results in increased healthcare costs, wastes laboratory resources, and
can trigger unnecessary patient anxiety.

* Many institutes employ a manual, rule-based approach in which the
laboratory medicine residents review PTH and calcium results and attempt to
identify inappropriate orders. This approach is labor-intensive and
time-consuming.



Objectives

* Develop a machine learning model to predict PTHrP results based on
patients’ other laboratory results available at the time of PTHrP
ordering.

* Investigate whether the ML model can potentially complement the
current hypercalcemia workup algorithm by identifying inappropriate
PTHrP orders, thereby improving test utilization and laboratory
stewardship.



Overall Workflow of PTHrP Model Development

and Evaluation
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Overview of the Original Dataset

* Areal, de-identified dataset consisting of 1330 PTHrP orders from 2012-2022 along with patients’ other
lab results available at the time of PTHrP ordering was provided by WUSM.
* PTHrP testing offered by WUSM was performed by Mayo Clinic Laboratories.

* This dataset was anonymously divided into training set (1064 patients) and test set (266 patients).
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* A total of 2,996 lab tests were ordered for all patients
* The majority of the tests were not ordered for most patients




Data Normalization

* Test methodology and reference range of the PTHrP assay and some
lab tests changed during the past 10 years

* Normalization of the lab test values based on their respective
reference range

val — normal_low

Valnorm = normal_high — normal_low

* Example
IPATIENT_ID ORDERABLE TASKASSAY  RESULT_VAL RESULT_UNITS NORMAL LOW NORMAL HIGH NORMALCY RESULT_STATUS ORDER_STATUS ORDER_PROVIDER ORDER.DT_TM PERFORMED_DT_TM
1 CBCHosp_| 'WBC 177 K/cumm 48 108 HI Auth Completed 38 2012/7/24 2306 2012/7/24 2343
17.7 — 4.8

2.15

Valnorm = 10828~




Data Preprocessing

* Compare the distribution of each laboratory test between PTHrP normal and
abnormal patient cohorts.

* Determined the observation window prior to the PTHrP order (1 year)

* Calculated statistics of each lab test in the observation window
* Min, max, mean, latest results
* Rate of the change

* Number of measurements in the observation window
e Missing values

Observation Window
< >

\.______

Rate of change
WBC [ I 7| = = | WBGatest, WBCrin, WBCrmax...] T
o i o
Patient ID = 1 sun|
RBC I I {| = | [RBCues, RBCrin RBCmax..] !
@ - N Time T __
' Hgb T T - |:> [Hgblatest, Hgbmin, Hgbmax,...]

PTHrP T .




Feature Selection and Missing Value Imputation

* 159 lab statistics were selected based on their missing rate (< 50%) during the
observation window and statistical testing between the PTHrP normal and

abnormal patients (p value after false discovery rate correction < 0.05)
* Mann-Whitney test for the continuous features
 Chi-square test for the binary features

* Missing values were imputed with the median value of the statistics across all

patients



Overall Process of Model Selection, Training, and
Evaluation

Model Training
” Train
; f

Model Selection

Validation
g Test Model Evaluation

N ~ /\/_/

Features Labels

Samples

Yang et al., Archives of Pathology and Lab Medicine, 2022



Model Selection and Training

A WUSM

* Model: XGBoost

* The XGBoost model outperformed random forest (RF), support s

vector machine (SVM), multi-layer perceptron (MLP) models in

Sensitivity
o
()}

the cross-validation of training data. a [
. ;’!'. —— XGBoost (AUROC: 0.889+0.030)
* Critical hyperparameters for the XGBoost model 02 {f | mioo nmmsam
|, —— |MLP. (AUROC:>O,A829;O.AO41)
0.0

* Number of selected features: 159 laboratory test statistics

1 - specificity
* Learning rate

* Prediction threshold



Model Evaluation

* It is recommended to use multiple criteria to comprehensively evaluate model performance

Receiver Operating Characteristics Curve

Confusion Matrix
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Performance of the XGBoost Model in WUSM Test Set

WUSM test set
Sensitivity = 0.900
Specificity = 0.842

2
Z 06
(%)
3 AUC =0.936
w)
0.4
0.2
0.0 — In-site (AUROC: 0.936)

0.0 0.2 0.4 0.6 0.8 1.0
1 - specificity



Does the ML Model Work better than the Calcium+PTH
Algorithm?

*Yes!

* Using WUSM as an example, if we only use total calcium and intact
PTH results available at the PTHrP order to predict the PTHrP
normalcy, AUROC of an XGBoost model would be 0.762, and
specificity would be 0.471 when sensitivity is sent to 0.900. The
predictive performance is remarkably worse compared to our
XGBoost mode incorporating other laboratory tests.



Interpretability of the PTHrP Model

PERSPECTIVE nawre, | : _
e machine intelligence

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

The way forward is to design wmodels that are
inherently interpretable.

Annals of Intemal Medicine’

LATEST  Ssue CHANRELS  CMU/MOC  INTHECUIMIC  JOURNAL CIDUE  WEB EICLUSIVES  AUTHOR N0

PRINARTIONE THMSIESAE  NEXT AATICLE

IDEAS AND OPINIONS 7 JANGARY 2020

Should Health Care Demand Interpretable Artificial Intelligence or
Accept “Black Box” Medicine?

‘et Wang, FhD, Rainu Kaushal MD, MPH, Dirur Khul WD, MPT
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Evaluation of ML Model Generalizability

Clinical
Chemistry

—
-y

Volume 68, Issue 3
March 2022

Clinical
Chemistry

Volume 69, Issue 6
June 2023

How Can We Ensure Reproducibility and Clinical
Translation of Machine Learning Applications in

Laboratory Medicine?

Shannon Haymond =, Stephen R Master

Clinical Chemistry, Volume 68, Issue 3, March 2022, Pages 392-395,
https://doi.org/10.1093/clinchem/hvab272
Published: 10 January 2022  Article history v

JOURNAL ARTICLE

Machine Learning in Laboratory Medicine:
Recommendations of the IFCC Working Group 8

Stephen R Master ™, Tony C Badrick, Andreas Bietenbeck, Shannon Haymond =

Clinical Chemistry, hvad055, https://doi.org/10.1093/clinchem/hvad055
Published: 30 May 2023  Article history v

Generalizability is the ability of a ML model to
perform well on independent datasets collected
from different geographic or demographic
populations or different hospital settings.

Recommendation #15: Verify generalizability,
particularly when applying a model outside its
original training context.



Factors that Affect Model Generalizability

* Patient demographic characteristics

* Geographic features

* Instrument platforms

e Sample handling protocols and other pre-analytical factors
* Testing methodologies

* Send-out laboratories



Model Evaluation — External Datasets

Weill Cornell Medicine (WCM):
1101 PTHrP orders from 2017
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Washington University School of
Medicine in St. Louis (WUSM)

1330 PTHrP orders from 2012 to 2022
Positive rate 17.5%

Send-out lab: Mayo Clinic Laboratories

University of Texas M.D. Anderson Cancer Center (MDA)
1090 PTHrP orders from 2021-2022
PTHrP positive rate 23.9%

Send-out lab: Mayo Clinic Laboratories




Directly Applying the PTHrP Model to
Independent External Datasets

 When the ready-made model was directly applied “as-is” to the two independent
datasets, its performance moderately deteriorated in MDA but substantially

deteriorated in WCM.

WUSM 0.936 0.842 0.488
MDA 0.838 0.633 0.542
WCM 0.737 0.441 0.269

* The performance drop was due to the shift of data distribution from the original dataset

to the new dataset.



Maximum Mean Discrepancy

* MMD quantifies the degree of distribution shift between two datasets.

* A higher MMD between each pair of datasets indicates a greater distribution shift,
which leads to a lower AUROC.

Training site Testing site Maximum mean AUROC
discrepancy

WUSM 0.084 0.737 0.199
MDA 0.073 0.838 0.098
WCM WUSM 0.076 0.707 0.130
MDA 0.050 0.743 0.094
MDA WUSM 0.011 0.858 0.033
WCM 0.038 0.633 0.258

* MMD could be used to predict performance deterioration of ML models when transported
to external sites. While there is not a specific MMD threshold to ensure successful
generalization, calculating MMD can facilitate the adoption process of ML models.



Strategies to Improve Model Performance

* Strategy 1: Re-training the XGBoost model using site-specific data with the same
model architecture, feature sets, and hyperparameters

* Strategy 2: Re-building the model using site-specific data including feature
selection, hyperparameter tuning and model parameter learning

WUSM WCM MDA
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5 Re-train (AUROC: 0.819) E Re-train (AUROC: 0.889)
0.0 —— In-site (AUROC: 0.936) 0.0 i —-—- Re-build (AUROC: 0.837) 0.0 ; —.— Re-build (AUROC: 0.891)
00 02 04 0-5 08 L0 00 02 04 0.6 08 1.0 00 02 04 0.6 08 1.0

1 - specificity 1 - specificity 1 - specificity



Model Adaptation in External Datasets

AUROC Specificity given Accuracy
sensitivity = 0.900

Testing: WUSM

In-site test 0.936 0.842 0.488 0.823
Testing: WCM

Direct-transport the model 0.737 0.441 0.269 0.787
Re-train the model 0.819 0.559 0.373 0.756
Re-build the model 0.837 0.532 0.406 0.787
Testing: MDA

Direct-transport the model 0.838 0.633 0.542 0.784
Re-train the model 0.889 0.705 0.505 0.766
Re-build the model 0.891 0.753 0.536 0.789

Take home message: When a ready-made model cannot be directly transported to external datasets due to the shift
of data distribution, some local customization strategies can be utilized to improve model performance, such as
re-training or re-building the model using site-specific data.



What If a Hospital Has Limited Laboratory Data to
Re-Train the Model?

* We explored a model fine-tuning strategy in
which the ready-made model is applied to
hospitals with limited training data
(low-resource scenarios).

* The fine-tuning strategy performed best when
the amounts of available samples were
relatively small (< 200). However, when the
number of available samples exceeded 200,
model re-training appeared to be a better
option.

AUROC

0.80

0.78

0.76

0.74

0.72

_____________
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Re-train

100 200 400
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Model Bank

* A trusted authority, e.g. an NIH archive or repository, may serve as the “bank”
storing models trained in different sites.

* All necessary metadata associated with each model should also be appropriately
recorded following specified reporting guidelines.

* |Institutes interested in deploying the model may select one or several models,
deploying them either directly or with suitable fine-tuning.

* Institutes can also build their own model and deposit to the model bank following
principles and instructions, which can continuously improve the model and make
it more robust and generalizable in practice.



Path to Model Implementation

* We are working on a pilot study to prepare for model deployment.

Indicating a high likelihood of abnormal
High Score |—— PTHrP result. It suggests ordering PTHrP

/ test to direct a focused cancer search
\_, Indicating a high likelihood of normal
PTHrP result. It reminds clinicians to check
Clinicians attempt to order a PTHrP test; Trigger the ML model to primary hyperparathyroidism first.
Or clinicians order a PTH + calcium panel calculate a score

e Determine the threshold for each scenario.
* Evaluate model fairness.
* Analyze model’s performance in a prospective patient cohort.

* Collaborate with clinical teams to evaluate the model’s real-world clinical utility.



Summary

* Machine learning holds a great potential to improve laboratory
efficiency and reduce pre-pre-analytical errors.

* The PTHrP model can potentially complement the current workup
algorithm by identifying inappropriate PTHrP orders, and thus
facilitating automation of the decision-making process, improving test
utilization and laboratory stewardship.

* It will also help identify patients who need PTHrP testing and facilitate
early cancer detection.

* Implementing a ML model in LIS/EHR system is still challenging and
requires consensus among experts in our field.
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